PROFESSOR ALFRED DOLICH MATH 14 FINAL REVIEW

(1) Simplify:

$$\left(\frac{3x^2y}{y^3}\right)^5$$

(2) Multiply:

$$(5-2x)\cdot(x^2-3x+2)$$

(3) Factor: $45x^3 + 8x^2 - 4x$

(4) Subtract:

$$\frac{x-3}{x^2-25} - \frac{x-3}{x^2+9x+20}$$

(5) Simplify: $\sqrt[3]{3x} - 2\sqrt[3]{24x} + \sqrt[3]{275x}$

(6) Solve:

$$\frac{1}{x-4} - \frac{1}{x-3} = \frac{1}{x-2} - \frac{1}{x-1}$$

(7) Write

$$\frac{2-5i}{4-7i}$$

in standard form.

(8) Solve: $4y^2 + 4y + 5 = 0$.

(9) Solve:

$$\sqrt{x-3} = \sqrt{2x-5} - 1$$

(10) Solve: $6 - x \le 3x + 10$ and $7x - 14 \le 3x + 14$.

(11) Solve:

$$\left| \frac{3}{5}x - 2 \right| \le 4$$

(12) Find the distance between (3,5) and (-1,3).

(13) Determine any symmetry of the graph of the equation:

$$x^2y^2 + 2xy = 1$$

- 2
 - (14) Find the equation of a line perpendicular to the line y = -2x + 3 and passing through the point (0,7).
 - (15) Find the domain of:

$$h(x) = \frac{x}{\sqrt{2-x}}$$

(16) Determine whether the function:

$$f(x) = \frac{3x^2 + 7}{x - 3}$$

is even odd or neither.

- (17) Sketch the graph of $f(x) = -\sqrt{-x} + 2$.
- (18) Let $f(x) = 2x^2 1$ and g(x) = 2 x. Find $g \circ f(x)$ and $f \circ g(x)$.
- (19) Verify that

$$f(x) = 2 - 3x$$
 and $g(x) = \frac{2 - x}{3}$

are inverses to one another.

- (20) Find the equation of a quadratic function in standard form which has vertex (-3,0) and passes through the point (-5,-4).
- (21) Sketch the graph of f(x) = x(x+1)(x-1)(x+2).
- (22) Find the quotient and remainder when $x^4 3x^3 + 2x^2 + 4x + 5$ is divided by
- (23) Sketch the graph of:

$$g(x) = \frac{x^2 - 4}{x^2 - 9}$$

(24) Solve:

$$\frac{x-2}{2x+1} < -1$$

- (25) Sketch the graph of -2^{x+1} .
- (26) Determine how long it will take your principal to double if you invest it at 4.2% compounded continuously.
- (27) Solve:

$$\log_{27} \sqrt[3]{1-x} = \frac{1}{3}$$

(28) Write in condensed form:

$$\frac{1}{5}(\log_2 z + 2\log_2 y)$$

(29) Solve

$$2 \cdot 3^{4x-5} - 7 = 10$$

(30) Solve

$$\log_4(x^2 - 7x + 14) = 1$$

- (31) Find the equation of a parabola in standard position with focus (0,4) and directrix y=4.
- (32) Sketch the graph of:

$$\frac{x^2}{9} + y^2 = 1$$

(33) Find the equation of the hyperbola with vertices $(\pm 2,0)$ and foci $(\pm 3,0)$.